[bookmark: _Hlk89853266]Microbial colonization of tannin-rich tropical plants: interplay between degradability, methane production and tannin disappearance in the rumenRumen tannin disappearance of tropical tannin-rich plants: interplay between degradability, methane production and adherent rumen microbiota


M. Rira1,2†, D.P. Morgavi1†, M. Popova1, G. Maxin1, and M. Doreau1

1INRAE, VetAgro Sup, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France 
2Ecole Nationale Supérieure de Biotechnologie, Ali Mendjli, BP E66, 25100 Constantine, Algeria

† E-mail: moufida_r@yahoo.fr; 
†diego.morgavi@inrae.fr



Abstract
Condensed tannins in plants are found free and attached to protein and fibre but it is not known whether these fractions influence rumen degradation and rumen function. The aim of themicrobial colonization.  This study was to exploreexplored the rumen degradation of tropical tannins-rich plants and elucidate theirthe relationship with the disappearance of between condensed tannins fractions. The effects on fermentation parameters fractions’ disappearance and microbial communities colonising plant particles in the rumen was also assessed.  We used in situ and in vitro approaches to study four leguminous: leaves.  Leaves from Calliandra calothyrsus, Gliricidia sepium, and Leucaena leucocephala, pods from Acacia nilotica pods and the leaves of two agricultural by-products: Manihot esculenta and Musa spp. Plants were analysed to quantify levels of hydrolysable tannins, free condensed tannins, protein-bound condensed tannins and fibre-bound condensed tannins. Rumen dry matter, nitrogen and fibre (NDF) degradability, rumen disappearance of tannin fractions and microbial colonisation ofwere incubated in situ in the rumen of dairy cows.  An In vitro approach was also used to assess the effects of these plants was assessed in situ.  The methane-mitigation potential of tannin-rich plants compared to a tropical forage without tannins was assessed in vitroon rumen fermentation parameters.  All plants contained more than 100 g/kg of condensed tannins with a large proportion (32 to 61%) bound to proteins.  Calliandra calothyrsus had the highest concentration of condensed tannins at 361 g/kg, whereas Acacia nilotica was particularly rich in hydrolysable tannins (350 g/kg).  Hydrolysable and free condensed tannins from all plants completely disappeared after 24 h incubation in the rumen.  Disappearance of protein-bound condensed tannins was more variable with values ranging from 93% for Gliricidia sepium showing the highest proportion (93%), Manihot esculenta and Musa spp. showed intermediate values of disappearance, and no disappearance was observed from Calliandra calothyrsus leaves. Into 21% for Acacia nilolitica.  In contrast, fibre-bound condensed tannins disappearance averaged ~82% and did not vary between plants.  Disappearance of bound fractions of condensed tannins was not associated with degradability of plant fractions. Dry matter and nitrogen degradation were similar for all plants except Calliandra calothyrsus and Musa spp. that showed lower values.  Calliandra and Acacia nilotica had also a lower NDF degradation.  Methane production was also lower for these plants and for Leucaena leucocephala although for the latter total volatile fatty acids production was not affected and was similar to control.   The presence of tannins interfered with the microbial colonisation of plants.  Each plant had distinct bacterial and archaeal communities after 3 and 12 h of incubation in the rumen and distinct protozoal communities at 3 h.  Adherent communities in tannin-rich plants had a lower relative abundance of fibrolytic microbes, notably Fibrobacter spp.  Whereas, archaea diversity was reduced in high tannin-containing Calliandra calothyrsus and Acacia nilotica at 12 h of incubation.  Concurrently, in vitro methane production was lower for Calliandra calothyrsus, Acacia nilotica and Leucaena leucocephala although for the latter total volatile fatty acids production was not affected and was similar to control.  Here we show that the total amount of hydrolysable and condensed tannins contained in a plant govern the interaction with rumen microbes affecting degradability and fermentation.  The effect of protein- and fibre-bound condensed tannins on degradability is less important.
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Introduction
Feed availability is a major limitation in many tropical ruminant production systems.  One way for farmers to increase forage availability in these grazing systems is to use leguminous trees for supplementing diets.  Leaves from leguminous trees are a high-protein feed resource that balances the nutrition of ruminants grazing tropical grasses poor in protein (Roothaert and Paterson, 1997).  However, they remain underutilised because of the presence of tannins that are often found at high concentrations.  High concentrations of tannins can reduce voluntary feed intake and nutrient digestibility (Frutos et al., 2004).  The decrease in nutritive value is associated with tannins’ property to bind to proteins, both from the diet and digestive enzymes.  Tannins also bind to structural carbohydrates present in plant cell walls (Mueller-Harvey et al., 2019).  Despite these adverse effects, a low concentration of tannins in the diet can improve nitrogen (N) utilisation efficiency and have a positive enteric methane-reduction effect (Goel and Makkar, 2012).  This latter effect is because tannins may reduce organic matter digestibility in the rumen even when total-tract digestibility is unchanged, or because they inhibit microbial populations, or both (Frutos et al., 2004). 
Tannins are conventionally classified into two major groups: hydrolysable (HT) and condensed tannins (CT).  Hydrolysable tannins consist of polyphenols (gallic acid and/or hexahydroxydiphenic acid) ester-linked to a hexose moiety.  They are categorised according to their structural characteristics into two subgroups: gallotannins and ellagitannins. In contrast, CT are polymers of varying molecular weight composed of flavan-3-ol (e.g., catechin) or flavan-3,4-diol (proanthocyanidins) linked by C–C or C–O–C bonds.  Condensed tannins are found in different fractions in plants: free, protein-bound, and fibre-bound (Mueller-Harvey and McAllan, 1992, Terrill et al., 1992, Schofield et al., 2001).  A better understanding of the effects of HT-rich and CT-rich forages on nutrient digestibility and methane mitigation properties would improve the management of such resources.  To this end, the relationship between feed degradation and the disappearance of CT fractions must be established for developing feeding strategies overcoming undesirable effects when using tannin-rich forages.  We hypothesised that rumen microbial degradation of tannin-rich forages is influenced not only by the abundance of tannins but also by their chemical form and binding to plants’ structural components.  This knowledge would be of considerable importance for the efficient utilisation of these forages in the tropics. 
Our objective was to study the degradation of tannin-rich forages in the rumen and establish the relationship with the amount and disappearance of their different tannin fractions.  We connected these effects on forage degradation and tannin disappearance with the microbial communities colonising feed particles in the rumen and with fermentation parameters.  We used six tropical forages from leguminous shrubs and agricultural by-products with differing amounts and nature of tannins.  We carried out 1) an in situ experiment, in order to determine the ruminal degradation of forage components, including different tannin fractions, and the colonisation of feed particles by microbes, and 2) an in vitro experiment, in order to measure methane production and feed fermentation. 
Materials and methods
The use of experimental animals followed the guidelines for animal research of the French Ministry of Agriculture and other applicable guidelines and regulations for animal experimentation in the European Union.  Animals were housed at the INRAE UE1414 Herbipôle Unit (Saint Genès Champanelle, France; https://doi.org/10.15454/1.5572318050509348E12).  Procedures were approved by French Ministry of Education and Research (APAFIS #8218-20161151782412). 
Plant material
Four browse species and two crops by-products rich in tannins and available in the tropics were selected.  The browse species were leguminous shrubs: Acacia nilotica pods, Calliandra calothyrsus, Gliricidia sepium and Leucaena leucocephala leaves. The by-products were cassava (Manihot esculenta) leaves and banana (Musa spp.) leaves.  These species are consumed by ruminants and have a large range of CT and HT content.
Acacia nilotica samples were collected from the Ferlo region of Senegal (15°N, 15°W) having a mean annual rainfall of 200-400 mm and a mean temperature of 28-30°C. Gliricidia sepium, Leucaena leucocephala, Manihot esculenta and Musa spp. were collected in Guadeloupe, Basse-Terre Island, France (16°N, 61°W), having a mean annual rainfall of 1500-2000 mm and a mean temperature of 24-28°C. Calliandra calothyrsus was collected from native shrubs in the south of the Réunion Island, France (21°S, 55°E) having a mean annual rainfall of 1000-1500 mm and a mean temperature of 20-24°C; leaves were harvested at a late vegetative stage. 
Following collection, fresh material was dried at 40 °C to avoid degradation or modification of tannins, ground to pass through a 1-mm grid and placed in air-tight plastic bags.  Upon reception at the laboratory in Metropolitan France, samples were stored at room temperature until use for in situ and in vitro measurements.  Forages poor in tannins were used as a control when necessary for a better understanding of processes.  For studying microbial colonisation of feed particles, the control forage was the natural grassland hay used for feeding animals.  For studying changes in methane production and feed fermentation, the control forage was hay from a 75-d regrowth of natural grassland based on Dichanthium spp. harvested in Guadeloupe, Grande-Terre Island, France.
Experiment 1: In situ rumen degradation
Three rumen-cannulated Holstein non-lactating cows were used for the study with an average body weight of 737 ± 40 kg.  Cows were housed in individual pens and fed natural grassland hay, first cycle harvested in Auvergne, France.  A fixed amount of 7.6 kg DM of hay was offered to each cow twice a day: 2/3 at 0900 h, 1/3 at 1600 h.  Water was on free access.  In situ ruminal incubations started after 15 days of adaptation to the diet.
Feeds were incubated in the rumen for 3, 6, 12, 24, 48 and 96 h.  Three grams of ground samples were put into 5.5 × 12 cm polyester bags (pore size ca. 50 μm, model R1020, Ankom, Fairport, NY).  Bags were hooked to a stainless-steel weight and inserted in the ventral sac of the rumen at 0800 h.  Two successive series of incubations were performed for each cow.  Each series had one bag per feed and incubation time for measurements of DM, N and NDF degradation, two bags per feed for measurements of CT disappearance at 24 h of incubation to get enough residues for further tannin analyses and two additional bags per feed for measurements of microbial colonisation at 3 h and at 12 h.  At each designated incubation time, bags for measurements of DM, N and NDF degradation and tannin disappearance were removed from the rumen, immersed in cold water and then washed under running tap water until the water became clear.  Zero-time disappearance was obtained by washing two non-incubated bags per feed as described above.  Bags were kept at 4 °C for 48 h then washed in a washing machine without detergent until clean water was obtained (4 cycles of 10 min), dried at 40 °C for 96 h and weighed to determine rumen residual DM content.  Bags for microbial analysis, taken out after 3 and 12 h of incubation, were gently squeezed, put on ice and immediately transferred to the lab where they were washed three times in phosphate-buffered saline at 4°C for 5 min on a rocking shaker at ~40 cycles per min. Bags were then snap-frozen in liquid N and stored at -80°C until gDNA extraction. 
Experiment 2: In vitro fermentation 
Fermentations were performed using a batch technique (Rira et al., 2019).  The donor animals were four Texel wethers fitted with a ruminal cannula and weighed on average 80.7 ± 6.9 kg.  Wethers were fed daily 900 g hay (natural grassland based on Dichanthium spp.) divided into equal amounts at 0700 and 1900 h. Wethers were adapted to the diet for 2 weeks before being used as donors.  Four series of 24-h incubations were performed, one per wether.  In each series, control Dichanthium and the six tannin-rich forages were anaerobically incubated in duplicate as described (Rira et al., 2019).  
Gas production was measured at 24 h using a pressure transducer.  After recording pressure, a gas sample (5 mL) was taken for methane analysis.  For VFA determination, 0.8 mL of filtrate was mixed with 0.5 mL of 4 mg/mL crotonic acid and 20 mg/mL metaphosphoric acid in 0.5 M HCl and frozen at –20°C until analysis.
Chemical analyses
Feeds and feed residues in bags were analysed according to the Association of Official Analytical Chemists (AOAC, 2005).  Organic matter in feeds was determined by ashing at 550 °C for 6 h (AOAC method number 923.03).  Nitrogen (N) in feeds and feed residues was determined by the Dumas method (crude protein (CP) = N × 6.25, AOAC method number 992.15).  For residues at 24, 48 and 96 h, residues of the 3 cows were pooled to get enough residue for analysis.  Cell wall components in feeds (NDF, ADF, and ADL) were determined using sodium sulphite, without heat-stable amylase and including residual ash (AOAC methods number 200.04 and 973.18).  Enzymatic dry matter digestibility was estimated in feeds by hydrolysis with pepsin in 0.1 N HCl then with fungal cellulose (Aufrere and Michalet-Doreau, 1988).  
Soluble CT, protein-bound CT and fibre-bound CT fractions in tannins-rich plants samples were extracted and analysed according to Terrill et al. (1992) as previously detailed (Rira et al., 2019). The concentration of CT in soluble, protein-bound and fibre-bound fractions was calculated with a standard calibration curve of purified quebracho tannins.
For HT, the rhodanine method was used for determination of gallotannins in feeds (Inoue and Hagerman, 1988).  The potassium iodate (KIO3) method was used to estimate total HT (gallotannins and ellagitannins) in feeds (Hartzfeld et al., 2002). Details of these two methods are mentioned in (Rira et al., 2019).  Ellagitannins were calculated using the difference between total HT and gallotannins.
After in vitro fermentation, gas composition was determined by gas chromatography (Micro GC 3000A; Agilent Technologies, Les Ulis, France) within 2 h after sampling.  Gas molar concentration was calibrated using a certified standard.  Volatile fatty acids were analysed by gas chromatography using crotonic acid as internal standard on a Perkin Elmer Clarus 580 GC (Perkin Elmer, Courtaboeuf, France) equipped with a Stabilwax-DA column (30 m by 0.53 mm i.d.) (Morgavi et al., 2013).
Microbial analysis: DNA extraction and sequencing strategy
DNA was extracted following the protocol described by Yu and Morrison (2004). Total genomic DNA was sent to Roy J. Carver Biotechnology Center (Illinois, USA) for fluidigm amplification and Illumina sequencing using primers targeting bacterial 16S rRNA gene (V3-V5 region), archaeal 16S rRNA gene, fungal ITS2 and 18S rRNA gene for protozoa, as described (Saro et al., 2018, Popova et al., 2019). 
Microbial bioinformatics analyses. 
Raw sequencing data were trimmed for quality (Phred score > 25), expected amplicon length (570 nt for bacteria 16S rRNA gene, 457 nt for archaea 16S rRNA gene, 660 nt for 18S rRNA gene and 356 nt for ITS) and maximum 5 primer mismatches. Sequences were analysed using computational pipelines as described (Saro et al., 2018).  On average per sample, we obtained 28 045 (±6 457) reads of bacterial 16S rRNA gene, 23 718 (±4 726) for archaeal 16S rRNA gene and 18 645 (±2 696) for eukaryotic 18S rRNA gene.  For fungi, most samples had a low number of reads, precluding further comparative analysis between samples.  As forward and reverse reads for bacterial 16S rRNA gene amplicons reads and eukaryotic 18S rRNA gene amplicons reads were not overlapping, sequence data were analysed using IM Tornado pipeline (Jeraldo et al., 2014) and taxonomy assigned according to Silva v128.  Archaeal sequences were analysed following standard QIIME pipeline (Caporaso et al., 2010) and taxonomy assigned with RIM DB (Seedorf et al., 2014).  Sequencing data are available in the Sequence Read Archive (SRA) under accession ID PRJNA554299.  
OTU tables were analysed in R using the package “vegan” (Oksanen et al., 2016). Diversity indices (Shannon, Simpson, Richness and Evenness) were computed using implemented functions and statistical differences were tested using the non-parametric Kruskal-Wallis test to evaluate the effect of plant at each incubation time. For β-diversity analysis, OTU tables were rarefied to an even depth: 3460 reads for bacteria, 4103 for Archaea and 1000 for protozoa.  Bray-Curtis method was used for computing dissimilarity indices with the vegdist function.  Principal component analysis (PCoA) was performed on dissimilarity matrices with prcomp function.  Permutational multivariate analysis of variance was performed using Adonis function. Correlations were computed using vegan’s function “corr” and “Hmisc” and “corrplot” packages were used for plotting correlation matrices.  Differential abundance analysis to evaluate the effect of plant at each incubation time were done with MicrobiomeAnalyst (Chong et al., 2020) using default data filtering (4 minimum count, 20% prevalence, low variance filter: 10% inter-quantile range), relative log expression (RLE) for normalisation and the metagenomeSeq package (Paulson et al., 2013). 
Degradation and fermentation data: calculations and statistical analyses
Rumen degradability (D) of DM and N were calculated using an exponential model with lag time (Denham et al., 1989):  
D (t) = a + b (1 – e-c(t-L)) 
where D is the degradation after t hours of rumen incubation; t = hours of rumen incubation (0, 3, 6, 12, 24, 48 and 96 h); a = rapidly degradable fraction (%); b = slowly degradable fraction (%); c = degradation rate constant of the b fraction (h-1); L= lag time before the beginning of degradation of the b fraction (h). 
The nonlinear procedure (PROC NLIN) of SAS v9.4 (SAS Inst. Inc., Cary, NC, USA) was used to fit degradation data to the model.  This model was chosen after a preliminary comparison of models with or without lag time, because lag time was higher than 3 h for 4 of the 6 feeds, and because the model with lag time globally led to lower sum of squares than the model without lag time. The theoretical degradability in the rumen derived from the model (TDm) was calculated from the equation: 
TDm = a + [b × c /(c + kp)] 
where kp is the passage rate of solid contents out of the rumen. A unique value of 0.04 h-1 was used for all feeds. Rumen degradability of NDF did not fit to the exponential model due to a linear degradation rate for Calliandra calothyrsus and to erratic variations for other two forages.  For NDF calculations of degradability, we used instead a stepwise method (Kristensen et al., 1982): 
TDs = Σ(i = 0 to n) (Dt(i+1) - Dti) × p (ti , ti+1) 
where (Dt(i+1)-Dti) is the amount of feed degraded between times ti+1 and ti, and p (ti , ti+1) is the proportion of feed remaining in the rumen between times ti and ti+1 with pti = e-kpti. 
From VFA production in the in vitro experiment, fermented organic matter (FOM) was calculated by the stoichiometric equation of Demeyer and Van Nevel (1975): 
FOM = 162 (0.5 acetate + 0.5 propionate + butyrate + valerate) where FOM is expressed in mg and VFA in mmol. 
Data of both experiments were submitted to the same mixed model using the MIXED procedure of SAS including feed (n = 6 for in situ experiment and n = 7 for in vitro experiment) as fixed effect and animal (n = 3 for in situ experiment and n = 4 for in vitro experiment) as random effect. Differences between feeds were analysed using the Tukey t-test.  Effects were declared significant when P < 0.05. Principal component analyses were performed using Minitab® version 17 software (Minitab Inc., State College, PA).  Average values for each of the 6 tannin-rich plants were included for 19 variables: 7 from chemical composition, 5 from experiment 1 and 7 from experiment 2. 
Results
Forage characteristics
The chemical composition of forages is shown in Table 1.  Tannin-containing plants have higher concentration of CP and lower concentration of fibre than the control forage, except Musa spp.  The enzymatic DM digestibility test showed high values (~70%) for Acacia nilotica pods, Leucaena leucocephala, Gliricidia sepium and Manihot esculenta leaves, whereas digestibility of Musa spp. and Calliandra calothyrsus leaves was much lower at 40% or less.  There were marked differences among forages in both the total amount of CT and the fraction that tannins were associated with (Table 1).  For all forages, bound CT were predominantly (≥ 60%) linked to protein compared to fibre.  The proportion of free CT was particularly large in Calliandra calothyrsus leaves (54% of total CT) and Acacia nilotica pods (58% of total CT).  In addition, Acacia nilotica pods were particularly rich in HT (350 g/kg DM versus less than 33 g/kg DM for the other plants).  For the others forages consisting in plant leaves, the HT content was minor.  For all forages, ellagitannins were predominant representing ≥ 80% of total HT. 
In situ dry matter, N and NDF degradability
Dry matter degradability was similar for Acacia nilotica pods, Gliricidia sepium, Manihot esculenta, and Leucaena leucocephala with values around 65%, whereas only a third of Musa spp. and Calliandra calothyrsus leaves were degraded (Table 2).  However, for forages presenting similar degradability, there were differences in the proportion of degraded fractions and rate of degradation.  Acacia nilotica pods and Gliricidia sepium had a higher proportion of soluble fraction (a), whereas Leucaena leucocephala and Manihot esculenta leaves had a higher proportion of potentially degradable fraction (b).  Musa spp. and Calliandra calothyrsus, had lower values for the (a) and (b) fractions than the others forages.  Although they have similar degradability, Musa spp. leaves had a low proportion of slowly degraded fraction (b) at 14%, whereas Calliandra calothyrsus leaves were the most slowly degraded (0.022% h-1).  
The N degradability showed similar values and ranking than DM degradability.  Notwithstanding, there was a higher variation among forages with Manihot esculenta leaves presenting the highest overall degradability due to its high proportion of soluble fraction (a) and high rate of degradation (c).  For both DM and N, the theoretical degradability calculated according to the model was similar to values obtained by a stepwise calculation.  The rumen degradability of NDF was calculated with the stepwise method only because the exponential method with lag time failed to produce suitable models for most forages.  Compared to N, NDF was generally less degraded.  In most plants around one third of NDF was degraded in the rumen; notable exceptions were Acacia nilotica pods with 14% disappearance and Calliandra calothyrsus with only 6%. 
Condensed tannins, N and NDF disappearance
Results of 24-h disappearance of tannins, are presented in Table 3, together with N and NDF disappearance to assess if there is a relationship between these parameters.  The disappearance of N and NDF at 24 h was calculated from degradability values above to have the same point in time as tannins.  After 24 h in the rumen, free CT disappeared completely or almost completely (~98%) in all forages.  Among those plants exhibiting a high proportion of protein-bound CT, the disappearance of this fraction was variable with up to 93% loss in Gliricidia sepium and no disappearance in Calliandra calothyrsus.  For this latter forage, it is noted that N disappeared at 24 h was ~32% but it had also the highest amount of CT linked to protein (Table 1).  For fibre-bound CT, the average disappearance at 24 h was ~80% and, despite numerical differences, did not differ significantly between forages (P> 0.05).  The disappearance of total CT reflected the differences observed in the disappearance of the various fractions and ranged from 58% for Calliandra calothyrsus leaves to 95% for Gliricidia sepium.
Microbial community attached to tannin-rich plants
We studied ruminal microbial communities attached to plants after 3 and 12 h of incubation in the rumen.  Incubation times were chosen in order to catch the biphasic primary and secondary colonisation process described in temperate plants (Elliott et al., 2018).  Based on the known differences in communities between these two phases (Mayorga et al., 2016, Elliott et al., 2018), most results are presented by incubation time to better identify the effect of plants.  
For anaerobic fungi, most samples had a low number of reads and no downstream analysis was made.  However, it is noted that the only plant that was consistently colonised by anaerobic fungi was Musa with a threefold increase from 3 to 12 h reaching more than 4000 reads on average (Supplementary Figure 1).  For protozoa, Leucaena leucocephala had low numbers of reads but it was considered a characteristic of the plant and these samples were included in downstream analysis. 
Changes on alpha diversity indices were more marked for bacteria at 3 h (Supplementary Table 1).  Calliandra calothyrsus had high alpha diversity values that remained numerically higher than for other plants at 12 h.  Whereas, archaeal indices differed more at 12 h than at 3 h; Acacia nilotica and, to a lesser degree, Calliandra calothyrsus were the plants with the lowest values.  
Principal coordinated analysis plots showed differences in community structure that were influenced by the type of plant (Figure 1).  Permanova analyses highlighted significant differences between plants for all microbial communities at 3 h (Adonis P < 0.001; R2= 0.53, 0.43 and 0.59 for bacteria, archaea and protozoa, respectively).  These differences remained at 12 h for bacteria (Adonis R2= 0.69, P < 0.001) and archaea (Adonis R2= 0.48, P < 0.001).  At 3 h, the first component separated bacterial communities attached to Acacia nilotica, Calliandra calothyrsus and Leucaena leucocephala from Musa, Manihot esculenta, and the control hay (same hay fed to cows).  However, at 12 h, only Musa and control hay grouped together clearly separated from the other plants.  For archaea, Acacia nilotica and Calliandra calothyrsus were separated from other plants both at 3 and 12 h of incubation.  Whereas, for protozoa, Leucaena leucocephala was clearly separated from all other plants at 3 h, undoubtedly due to the low number of reads recovered from this plant; and, at 12 h not clear grouping of plants was observed in agreement with permanova results.  The bacterial and archaeal communities correlated with some chemical features of plants; NDF and ADF contents influenced the bacterial community structure and total concentration of tannins, both CT and HT, had a stronger influence on the archaeal community structure (Supplementary Figure 2). 
Differential abundance analyses showed a numerically higher proportion of Proteobacteria for plants richer in tannins at 3 h of incubation (Table 4).  At lower taxonomical levels, the family Rhodospirillaceae from the Proteobacteria was particularly abundant in Calliandra calothyrsus (Supplementary Table 4), whereas the γ-proteobacterium Pantoea sp. was more abundant in Calliandra calothyrsus and Leucaena leucocephala (Supplementary Table 2).  In contrast, the phylum Fibrobacteres was more abundant in Musa and control hay, which were the plants containing a higher amount of fibre and less tannins.  The differences were particularly striking at 12 h of incubation with ~25% of sequences belonging to Fibrobacteres in these two plants compared to values as low as 3% for Acacia nilotica (Table 4).  Results for families and genera levels are shown in Supplementary Tables 2 to 5.  Lachnospiraceae were proportionally more abundant in Calliandra calothyrsus, Leucaena leucocephala and Glyricidia sepium at 3 h of incubation and generally more abundant in tannin-rich plants at 12 h of incubation.  Representative genera of this family, such as Butyrivibrio and Oribacterium showed the same trend.  There were no marked differences in relative abundance of archaea (Supplementary Tables 6 and 7) and, for protozoa, the main change was observed in the relative abundance of Isotricha spp. that was higher at 3 h in Acacia nilotica; differences were less marked at 12 h.  In accord with these results, there was a positive correlation between Isotricha spp. and the levels of HT and TCT (Supplementary Tables 8 and 9, and Supplementary Figure 2).
Correlation analyses considering the chemical composition of plants, including the various fractions of tannins, and the most abundant (≥ 1%) OTUs only show a few highlighted negative and positive associations.  At 3 h, a Succiniclasticum_uncl. OTU was negatively correlated to TCT and HT and a Chistensenellaceae R7 OTU was positively associated to the fibre-linked fraction of CT.  However, at 12 h, the same Chistensenellaceae R7 OTU and a Prevotella OTU were negatively correlated to the protein linked fraction of CT.  A Fibrobacter OTU was negatively correlated to HT, whereas Ruminococcaceae_NK4A214_group, Rikenellaceae_RC9_gut_group_uncl. and a Butyrivibrio_2_uncl. were positively correlated to CT (total, free and protein linked) (Supplementary Figure 32). 
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The in vitro incubation of each tannin-rich plant separately allowed to obtain additional information on their effects on rumen function and methane production.  All tannin-rich plants had lower production of gas than control (natural grassland hay based on Dichanthium spp.; Table 5).  Musa spp. and Calliandra calothyrsus were those that produced less gas.  Only Musa spp., Calliandra calothyrsus and Acacia nilotica had lower VFA production and FOM than control (P < 0.05).  All tannin-rich plants produced more acetate and less butyrate than control, resulting in the absence of difference in the ratio of acetate or acetate+butyrate to propionate between control and tannin-rich plants. Compared to control, methane production when expressed as mL/24 h was reduced for Leucaena leucocephala, and to a greater extent for Musa spp., Calliandra calothyrsus and Acacia nilotica.  When methane production was expressed per 100 mM of VFA produced, only Acacia nilotica and Musa spp. decreased production (P < 0.05) compared to control.  
The relationships between the content and type of tannins in plants and the in vitro and in situ parameters were further explored through a principal component analysis (Supplementary Figure 43) that showed that indicators of the extent of ruminal degradation and fermentation, including methane, were opposed on the first axis to total CT content and CT fractions, but not to HT.  
Discussion
All plant species used in this experiment were rich in CT.  The amount of CT was within those reported in the literature although mostly on the higher end.  The higher CT values in this work can be explained by the analytical method, involving a double-extraction procedure and different solvents for different fractions, potentially yielding a higher amount of extracted tannins than faster methods.  Four plants had a higher amount of protein-bound tannins than free tannins whereas two plants (Acacia and Calliandra) had a higher amount of free tannins.  It is generally reported, even for plants used in this study such as Leucaena leucocephala and Calliandra calothyrsus that free CT are higher than protein-bound CT that in turn is higher than fibre-bound CT (Terrill et al., 1992, Jackson et al., 1996, Dentinho and Bessa, 2016). However, similar to total CT, there are important divergences in the literature (Perez-Maldonado and Norton, 1996, Rubanza et al., 2005). 
In animal nutrition studies, the HT content of plant species is seldom measured and when done it is generally by using non-specific methods, e.g. they are often calculated by the difference between total tannins and CT.  We used methods that specifically measured the content of total HT and gallotannins.  Among the plants used in our study only Acacia nilotica was rich in HT.  Goel et al. (2015) also reported high values of HT for this plant (186 g/kg DM, estimated by the difference between total tannins and CT).  The other plants used in our study are recognised sources of CT but their HT content is seldom reported.  Our results show that these plants rich in CT are also a source of HT, which albeit minor can also have a biological effect. 
Degradation of tannin-rich plants in the rumen - relationship with tannin content
Calliandra calothyrsus and Musa spp. had a lower DM and N degradability (~33%) than the other plants (~65%).  However, there is no a single reason that may explain these differences.  Calliandra calothyrsus had a markedly low NDF degradability at 6% but it was the disappearance of condensed tannins, representing one third of plant weight, that affected the calculation of DM degradation.  Whereas, the low DM degradability of Musa spp. is mainly explained by the high proportion of NDF (65% on a DM base).  In both cases the rate constant c was low.  In contrast, the high degradability of Leucaena leucocephala, Glyricidia sepium, Acacia nilotica, and Manihot esculenta was due to the high N degradability, to the extensive disappearance of CT, and to the total disappearance of HT from bags.  Disproving our hypothesis, we did not observe any relationship either between N degradability and total or protein-bound tannin content, or between NDF degradability and total or fibre-bound tannin content. Similarly, the absence of relationship between total extractible tannins of plants and DM disappearance in situ of seven temperate browses was reported by Khazaal et al. (1993).  This contrasts with in vitro degradation results obtained with 72 African browses where protein and NDF degradability were negatively correlated with soluble CT but not with insoluble CT (Rittner and Reed, 1992). The difference with our results may be explained either by the low number of forages in our experiment or by the methodology (in vitro vs in situ). 
Rumen disappearance of tannins from plants
Information on tannin disappearance in the digestive tract of ruminants is scarce.  Hydrolysable tannins can be degraded by rumen microbes (Brooker et al., 1994, Goel et al., 2005).  However, as HT would be washed out of the bags, we did not attempt to quantify them after incubation.  
Most authors agree that there is no evidence for free CT degradation by microbes in the rumen (McSweeney et al., 2001b, Patra et al., 2012).  Notwithstanding, the complete rumen disappearance of free CT observed is logical because these compounds are water-soluble and are washed out of the bags.  A nearly complete (99%) disappearance of free CT of Calliandra calothyrsus between mouth and faeces was reported by Perez-Maldonado and Norton (1996). 
The disappearance of protein-bound CT varied largely between plants from 21 to 98%.  This variation may be due to differences in strength of binding between proteins and tannins (Le Bourvellec and Renard, 2019).  As stated above, no relationship was observed between disappearance of proteins and protein-bound CT except for Calliandra calothyrsus that had a low N degradation and no disappearance of protein-bound tannins.  For this plant, a negative value for disappearance was even obtained.  This may be due to a technical problem as interactions with the insoluble matrix, proteins, polysaccharides, and other plant polymers can decrease the solubility of tannins in the extractant, resulting in an underestimation of tannin content in feeds (Dentinho and Bessa, 2016).  Another possible reason is a linkage of dietary free CT with proteins.  According to Hagerman (1989), if CT are present in excess, all proteins available are bound to tannins, leading to insoluble complexes.  This is the case for Calliandra calothyrsus which contains more tannins than proteins (361 vs 217 g/kg, respectively).  
The fibre-bound CT represented a small proportion of the total CT content of the forages used in our study.  Their disappearance in the rumen varied between 61 and 98% but differences between forages were not significant.  
Tannin-rich plants and methane production
Tannin concentration is often considered a critical factor affecting ruminal fermentation (Patra and Saxena, 2011).  Correspondingly, we generally observed that the CT content of plants was negatively associated to in situ rumen degradability and to in vitro fermentation parameters including methane production.  However, the effect on methane of some plants could also be due to parameters other than CT.  As protein concentration affects the volume of gas produced by the bicarbonate buffer in the in vitro fermentation system, we will discuss methane production normalised by VFA for assessing the impact of tannin-rich plants independently of the extent of gas production.  Compared to control, Acacia nilotica and Musa spp. reduced methane production but probably not for the same reasons.  For Musa spp. the effect cannot be ascribed to the amount of tannins as this plant has a low concentration compared to others.  The effect could be due to other secondary compounds such as polyphenols that are present in Musa spp. leaves in large amounts (Marie-Magdeleine et al., 2010).  For Acacia nilotica, tannins are the most plausible cause of methane inhibition as this plant contains CT but is especially rich in HT.  We previously showed that HT could be more efficient than CT for reducing methane (Rira et al., 2019).  Several authors have also reported that HT can reduce methane production without compromising overall rumen fermentation, but to date only extracts were studied (Bhatta et al., 2009, Hassanat and Benchaar, 2013, Jayanegara et al., 2015).  It is likely that HT do not interfere with rumen fermentation because they do not bind to protein or fibre and do not have an inhibitory effect on microbes that can also degrade HT in the rumen (Patra et al., 2012). 
In this study, Gliricidia sepium and Manihot esculenta did not decrease methane production.  In previous studies, Gliricidia sepium was less effective than Leucaena leucocephala and Manihot esculenta for decreasing methane in vitro (Rira et al., 2015) and in vivo (Archimede et al., 2016).  The absence of effect of Manihot esculenta on methane production in this study is unexpected, but is consistent with the large variability of response of methane production to CT for a same plant (Piluzza et al., 2014).  
Tannin-rich plants modulate adherent rumen microbes
The colonising microbial community differed between plants and was influenced by tannins as well as other chemical features such as fibre content.  As plants were incubated in the same rumen environment and exposed to the same microbiota there is no doubt that the plant itself is selecting for their adherent microbiota, at least in the initial colonisation stages monitored in this work.  The process is probably a combination of microbial tolerance to tannins’ toxicity (Frutos et al., 2004) and substrate preferences.  Our results brings new insight on how methane production in the rumen is affected by tannin-rich plants and concurs with the reported absence of a relationship between chemical structure and biological effect of tannins including methane production (McAllister et al., 2005, Naumann et al., 2018).  
There is no equivalent published information on the attachment of rumen microbes to these plants for a straight comparison.  In contrast, the effect of tannin-rich plants or extracts added to the diet have been reported in several studies. 
The fungal community was targeted in our study but it was not further analysed as a low number of reads was recovered.  Nevertheless, Musa spp. with one of the lowest amounts of tannins among the tested plants was the only one colonised by fungi.  This result could be interpreted as an inhibitory effect of tannins on fungi as reported previously (Muhammed et al., 1995).  For protozoa, it is noted that Isotricha spp. were more abundant on Acacia nilotica samples at 3 h of incubation suggesting that this genus was attracted to HT particularly abundant in this plant.  This result is only comparable within this study as the pore size of the in sacco incubation bags may obstruct the free passage of protozoa but it can help explain the variable effect of different tannin sources on protozoa reported in the literature (Patra and Saxena, 2011).  
The plants' characteristics clearly influenced the structure of the attached bacterial community.  Initially, each plant seems to harbour a distinct community of primary colonisers.  Then, at 12 h when most of soluble tannins are no longer interfering, the communities in tannin-rich plants became more similar but distinctly separated from communities found in the control forage without tannin and the low-tannin containing Musa.  For archaea the pattern is different with only Acacia nilotica and Calliandra calothyrsus clearly separating from other plants.  This indicate that the plant effect is more important on colonising bacteria than on archaea, which is logical as the latter rely on metabolic end products from other microbes.  The different archaeal structure for tannin-rich Acacia nilotica and Calliandra calothyrsus could reflect a toxicity threshold attained at the biofilm microenvironment level that needs to be proved. 
Our results bring new evidence indicating that some of the differences reported on rumen microbes when tannins are supplemented to the diet are due to changes in the colonisation and development of feed-attached communities.  The low proportion of Fibrobacter attached to tannin-rich plants may explain why this fibrolytic bacterium is often affected in supplemented animals (McSweeney et al., 2001a, Diaz Carrasco et al., 2017, Harun et al., 2017, Salami et al., 2018).  On the other hand, some bacteria that were positively associated plants rich in tannins could provide new avenues of exploration for improving the nutritional value of these forages through modulation of the microbiota. 
Conclusion 
We used an integrated approach for assessing the effect of tannin-rich plants on rumen processes.  Tannin-rich plants have contrasting proportions of tannins bound to protein or fibre.  However, there was no relationship between the amount and disappearance of bound tannins and the rumen degradability of protein or fibre of the plants studied in this work, except for Calliandra calothyrsus that was extremely rich in CT.  Tannins present in plants restrained the colonization of certain rumen microbial populations known to play a role in the degradation of recalcitrant feeds.  These results expand our understanding of the effects of tannins in the rumen opening the way to improve their use in the diet of ruminants. 
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[bookmark: _Hlk73346939]Table 1. Chemical composition and enzymatic digestibility, in g/kg DM, of plants used in experiments
	
	Control hay
Exp. 1
	Control hay
Exp. 2
	Acacia 
nilotica
pods
	Calliandra 
calothyrsus
leaves
	Gliricidia 
sepium
leaves
	Leucaena 
leucocephala
leaves
	Manihot 
esculenta
leaves
	Musa spp
leaves

	Organic matter
	915
	927
	956
	956
	891
	897
	914
	895

	Crude protein
	83
	84
	140
	217
	250
	336
	294
	69

	NDF
	625
	701
	227
	333
	240
	223
	285
	653

	ADF
	351
	326
	152
	228
	147
	125
	202
	349

	ADL
	44
	20
	38
	63
	57
	46
	69
	63

	Total condensed tannins
	ND1
	ND
	157
	361
	112
	180
	166
	128

	Free
	ND
	ND
	91
	194
	5
	54
	59
	38

	Linked to protein
	ND
	ND
	51
	125
	69
	83
	95
	57

	Linked to fibre
	ND
	ND
	15
	42
	38
	43
	12
	33

	Hydrolysable tannins
	ND
	ND
	350
	33
	9
	13
	12
	4

	Gallotannins
	ND
	ND
	84
	6
	Traces
	Traces
	Traces
	Traces

	Ellagitannins
	ND
	ND
	266
	27
	9
	13
	12
	4

	Enzymatic DM digestibility
	-2
	529
	720
	406
	714
	745
	668
	359


1ND: not detected
2Not measured
Control hay Exp. 1: Natural grassland hay harvested in Auvergne, France
Control hay Exp. 2: Natural grassland hay based on Dichanthium spp. harvested in Guadeloupe, French West Indies

[bookmark: _Hlk89870138]Table 2. Dry matter, N and NDF degradability1 of tropical tannin-rich plants in the rumen
	
	Acacia nilotica 
	Calliandra calothyrsus
	Gliricidia sepium
	Leucaena leucocephala
	Manihot esculenta
	Musa spp
	SEM
	P Value

	Dry matter degradability
	
	
	
	
	
	
	
	

	   a (%)
	53.5a
	22.1e
	49.5b
	37.3c
	39.2c
	27.7d
	0.88
	< 0.001

	   b (%)
	30.4b
	[bookmark: _GoBack]25.2b2
	27.6b
	45.7 a
	41.4 a
	14.0c
	1.86
	< 0.001

	   c (h-1)
	0.038 ab
	0.022b
	0.170 ab
	0.075 ab
	0.189a
	0.027b
	0.0337
	0.013

	   L (h)
	4.24ab
	0.00b
	5.84a
	2.68 ab
	5.95 a
	4.90ab
	1.595
	0.026

	   TDm2 TDm3 (%)
	65.2a
	30.9c
	65.6a
	63.3b
	66.0a
	32.2c
	0.46
	< 0.001

	   TDs2(%)
	65.7 a
	32.0 b
	65.1 a
	63.8 a
	65.5 a
	33.2 b
	0.70
	< 0.001

	N degradability
	
	
	
	
	
	
	
	

	   a (%)
	40.1b
	24.7e
	37.8bc
	35.6c
	47.5a
	29.7d
	0.74
	< 0.001

	   b (%)
	58.6a
	45.1ab
	47.3a
	54.6a
	45.0ab
	13.4 b
	6.29
	0.004

	   c (h-1)
	0.031bc
	0.013 c
	0.076 b
	0.054 bc
	0.155a
	0.025bc
	0.0115
	< 0.001

	   L (h)
	1.88bc
	0.00c
	5.95a
	0.52c
	5.40ab
	8.54a
	0.912
	< 0.001

	   TDm2 (%)
	63.7c
	33.2d
	61.8c
	65.7b
	76.2a
	33.3d
	0.57
	< 0.001

	   TDs2 (%)
	64.1c
	34.7e
	61.1d
	66.2b
	75.7a
	34.1e
	0.64
	< 0.001

	NDF degradability
	
	
	
	
	
	
	
	

	   TDs2 (%)
	14.5 c
	6.3 d
	28.4 b
	30.0 b
	35.8 a
	30.7ab
	1.27
	< 0.001


a - dValues within a row with different superscripts differ significantly at P<0.05, n= 3.
1 Degradation D was modelled according to the equation D(t) = a + b (1-e-c(t+L)) where a is the rapidly degraded fraction, b the slowly degraded fraction, c the rate of degradation of fraction b, t the time of incubation in the rumen and L the lag time. 
2 n= 2
3 TDm : theoretical degradability calculated according to the model ; TDs : theoretical degradability calculated according to a stepwise calculation. 



Table 3. Rumen disappearance (%) of condensed tannins, N and NDF from tropical tannin-rich plants after 24 h of incubation
	
	Acacia nilotica 
	Calliandra calothyrsus
	Gliricidia sepium
	Leucaena leucocephala
	Manihot esculenta
	Musa spp
	SEM
	P Value

	Condensed tannins
	73.0d
	58.2e
	94.9a
	77.8cd
	88.6ab
	84.3bc
	2.10
	<0.001

	   Free
	98.3 
	97.4 
	100.0
	100.0
	100.0
	100.0
	-
	-

	   Linked to protein
	21.3d 
	-7.8e 
	92.9a
	58.0c 
	83.0ab 
	72.7bc 
	3.24
	<0.001

	   Linked to fibre
	83.0
	60.8 
	98.0 
	87.9  
	76.4 
	86.4 
	8.23
	0.10

	N
	65.3 b
	31.7 c
	68.8 b
	73.9 b
	89.1 a
	33.8 c
	2.93
	0.001

	NDF
	11.5 ab
	5.1 b
	31.6 ab
	33.8 ab
	43.4a
	27.8 ab
	8.21
	0.012


a - dValues within a row with different superscripts differ significantly at P<0.05.



[bookmark: _Hlk70598296][bookmark: _Hlk70598655]Table 4. Relative abundance of rumen bacterial phyla colonizing tropical tannin-rich plants incubated in the rumen of cows (n= 3) for 3 and 12 h
		
	Control1
	Acacia nilotica
	Calliandra calothyrsus
	Gliricidia sepium
	Leucaena
Leucocephala
	Manihot esculenta
	Musa spp 
	P value
	FRD2

	After 3 h of incubation
	
	
	
	
	
	
	
	
	

	Firmicutes
	47.61
	41.16
	43.47
	57.90
	60.08
	43.58
	50.26
	0.554
	0.727

	Bacteroidetes
	36.59
	37.89
	42.87
	32.39
	29.41
	42.71
	32.71
	0.375
	0.687

	Fibrobacteres
	11.53
	2.12
	3.87
	5.19
	3.50
	8.13
	12.88
	0.089
	0.327

	Spirochaetae
	1.53
	1.68
	3.24
	1.47
	2.30
	3.39
	1.57
	0.464
	0.727

	Actinobacteria
	1.52
	6.46
	2.52
	1.75
	1.25
	0.92
	1.84
	0.221
	0.607

	Proteobacteria
	0.52
	9.77
	3.15
	0.70
	2.95
	0.43
	0.33
	0.015
	0.083

	Tenericutes
	0.46
	0.84
	0.74
	0.40
	0.34
	0.63
	0.22
	0.868
	0.868

	Chloroflexi
	0.25
	0.08
	0.14
	0.19
	0.15
	0.21
	0.19
	0.595
	0.727

	After 12 h of incubation
	
	
	
	
	
	
	
	
	

	   Firmicutes
	38.54
	55.98
	45.32
	54.81
	43.48
	35.15
	40.42
	0.592
	0.609

	   Bacteroidetes
	30.78
	29.22
	32.76
	27.63
	34.39
	33.63
	28.41
	0.093
	0.249

	   Fibrobacteres
	26.76a
	2.72d
	5.88c
	11.09b
	13.93b
	11.02b
	23.15a
	0.006
	0.045

	   Spirochaetae
	1.94
	5.17
	7.53
	3.20
	5.37
	13.89
	7.13
	0.609
	0.609

	   Tenericutes
	0.93
	5.31
	7.50
	2.57
	2.45
	5.93
	0.38
	0.076
	0.249

	   Actinobacteria
	0.65
	0.32
	0.37
	0.36
	0.10
	0.19
	0.31
	0.550
	0.609

	   Proteobacteria
	0.25
	1.24
	0.46
	0.22
	0.20
	0.11
	0.11
	0.155
	0.309

	   Chloroflexi
	0.16
	0.05
	0.18
	0.10
	0.07
	0.09
	0.09
	0.484
	0.609


1Control: Natural grassland hay harvested in Auvergne, France
2FDR= false discovery rate post-hoc adjustment



Table 5. In vitro ruminal fermentation of tropical tannin-rich plants
	
	Control1
	Acacia nilotica 
	Calliandra calothyrsus
	Gliricidia sepium
	Leucaena
leucocephala
	Manihot esculenta
	Musa spp 
	SEM
	P value

	Total gas production (mL / 24 h)
	34.41a
	23.26c
	16.25d
	28.01b
	24.28bc
	27.95b
	11.90d
	1.630
	< 0.001

	Total VFA2 production (mM / 24 h)
	45.61a
	31.98bc
	27.14c
	52.49a
	41.53ab
	48.11a
	31.96bc
	3.251
	< 0.001

	VFA composition (%)
	
	
	
	
	
	
	
	
	

	   Acetate
	54.15b
	68.05a
	65.01a
	63.56a
	61.21ab
	64.92a
	62.79ab
	2.079
	0.003

	   Propionate
	19.08ab
	18.07b
	19.43ab
	18.34b
	23.67a
	17.20b
	18.20b
	1.084
	0.010

	   Butyrate
	19.92a
	6.28 bc
	5.32c
	9.21ab
	6.50 bc
	8.28 bc
	6.77 bc
	0.861
	< 0.001

	   Isobutyrate
	1.40bc
	0.92c
	2.24 ab
	2.19a b
	1.78 bc
	2.25 ab
	2.97 a
	0.319
	< 0.001

	   Isovalerate
	2.30b
	2.26 b
	4.24 a
	3.19 ab
	3.13 ab
	3.52 ab
	4.28 a
	0.761
	0.005

	   Valerate
	2.91b
	4.28 ab
	3.46 ab
	3.30 ab
	3.52 ab
	3.67 ab
	4.64a
	0.469
	0.010

	   Caproate
	0.25 abc
	0.13c
	0.29ab
	0.21 abc
	0.20 abc
	0.16 bc
	0.35a
	0.045
	0.003

	Acetate:propionate
	2.88 a
	3.90a
	3.41 a
	3.49 a
	2.59 a
	3.78 a
	3.47 a
	0.281
	0.038

	(Acetate + butyrate):propionate
	3.94 ab
	4.25 ab
	3.69 ab     
	3.99 ab
	2.86b
	4.27a
	3.84 ab
	0.301
	0.060

	Fermented organic matter (mg / 24 h)
	177a
	112bc
	90c
	180a
	142ab
	165a
	105bc
	11.3
	< 0.001

	Fermented organic matter (% OM)
	47.3ab
	28.8cd
	23.4d
	51.0a
	39.0bc
	44.9ab
	29.9cd
	2.95
	< 0.001

	Methane production  (mL / 24 h)
	3.92a
	1.75c 
	1.66c
	3.54a 
	2.59b 
	4.00a 
	1.41c
	0.201
	< 0.001

	Methane production  (mL/100 mM VFA)
	8.69 a
	5.52 b
	6.49 ab
	6.75 ab
	6.35 ab
	8.56 a
	4.45 b
	0.700
	0.003


a - dValues within a row with different superscripts differ significantly at P<0.05.
1Control: Natural grassland hay based on Dichanthium spp. harvested in Guadeloupe, French West Indies.
2 VFA: volatile fatty acids.



