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Abstract 24 

Background 25 

Understanding the effects of environment on livestock provides valuable information on how 26 

farm animals express their production potential, and on their welfare. Ruminants often face 27 

perturbations that affect their performance. Evaluating the effect of these perturbations on 28 

animal performance could provide metrics to quantify how animals cope with their environment 29 

and therefore, better manage them. In dairy systems, milk production records can be used to 30 

evaluate perturbations because (1) they are easily accessible, (2) the overall dynamics 31 

throughout the lactation process have been widely described, and (3) perturbations often occur 32 

and cause milk loss. In this study, a lactation curve model with explicit representation of 33 

perturbations was developed. 34 

Methods 35 

The perturbed lactation model is made of two components. The first one describes a theoretical 36 

unperturbed lactation curve (unperturbed lactation model), and the second describes deviations 37 

from the unperturbed lactation model. The model was fitted on 319 complete lactation data 38 

from 181 individual dairy goats allowing for the characterization of individual perturbations in 39 

terms of their starting date, intensity, and shape. 40 

Results 41 

The fitting procedure detected a total of 2,354 perturbations with an average of 7.40 42 

perturbations per lactation. Loss of production due to perturbations varied between 2% and 43 

19%. Results show that the number of perturbations is not the major factor explaining the loss 44 

in milk yield over the lactation, suggesting that there are different types of animal response to 45 

challenging factors. 46 

Conclusions 47 



By incorporating explicit representation of perturbations, the model allowed the 48 

characterization of potential milk production, deviations induced by perturbations (loss of 49 

milk), and thereby comparison between animals. These indicators are likely to be useful to 50 

move from raw data to decision support tools in dairy production.  51 



INTRODUCTION 52 

In the context of precision livestock farming, simple interpretive tools are required to convert 53 

raw time series datasets, now routinely recorded in animals, into useful information for on-farm 54 

decision-making. Such tools are not only expected to provide farmers with good information 55 

on performance level of individual animals, but also to detect pathological, nutritional or 56 

environmental problems affecting production traits at individual or herd scales. In dairy 57 

systems, it is well known that milk yield can be affected by events such as udder health 58 

problems [1], lameness [2], meteorological changes [3], or feed quality [4]. Such problems 59 

induce perturbations in the course of the lactation process and result in a serrated shape pattern 60 

of the lactation curve. These perturbations can be seen as deviations of the lactation curve from 61 

its typical profile. This typical profile reflects that lactation is a physiological process common 62 

to mammalian females, and as a result, its expression through time follows a general pattern 63 

[5]. It can be described in 3 phases. The first phase starts after parturition with the initial milk 64 

yield increasing to a maximum or peak yield. The second phase is a plateau-like period in which 65 

maximum milk yield is maintained for a more or less long time. The third phase is the decrease 66 

from the peak yield. This last phase can be divided into two parts according to the speed of 67 

decrease, the first one corresponding to an approximately constant declining rate of milk 68 

production after the peak yield, and the second corresponding to an acceleration of the milk 69 

yield decline as pregnancy progresses before the start of the dry period when lactation stops [6–70 

8]. Modelling the lactation curve is a long standing issue [9] and numerous authors have 71 

proposed mathematical models allowing the characterization of milk yield dynamics, i.e., the 72 

transformation of a series of temporal data into a vector of estimated parameters via a fitting 73 

procedure. The most famous and used model is the one published by Wood in 1967 [10]. The 74 

overall objective of lactation models is to reduce the variability in data by creating a profile, 75 

thereby being able to characterize an average animal milk production, or to compare the 76 



production of different animals. This strategy of using lactation models as phenotyping tool has 77 

been very useful in the past years (for instance, test-day models for genetic selection) and in a 78 

context of scarce raw data. An important limitation of these modelling approaches is that short-79 

term perturbations are removed during the fitting procedure in order to extract an unperturbed 80 

phenotype, corresponding to a typical lactation curve. However, characterizing perturbations 81 

can be highly relevant for better understanding the resilience of dairy females regarding their 82 

milk production and therefore for making management decisions [11]. Furthermore, evaluating 83 

the effect of perturbations on animal performance could provide metrics to quantify how 84 

animals cope with their environment, and develop management strategies to find a good balance 85 

between animal welfare and performance. 86 

 The need for incorporating perturbations into lactation curve models is also driven by the 87 

development of precision livestock farming. Now, we have more frequent and reliable data and 88 

we can transition data analysis from reducing variability around average profiles to extracting 89 

variability to provide information. High throughput data has led to the development and use of 90 

statistical methods, such as smoothing methods, to capture and understand perturbations [12]. 91 

Codrea et al. [12] studied the effect of nutritional challenges on the lactation curve in dairy 92 

cows using differential smoothing procedures for quantifying biological perturbations in an 93 

animal performance. Results of this study highlighted the decline in milk yield during the 94 

challenge period for each cow, and showed the presence of other deviations with unknown 95 

causes or unrelated to the feed restriction during experiment. On the other hand, Friggens et al. 96 

[4] used a clustering procedure linked to a piecewise mixed model to characterize different 97 

responses between lactation stages and types of response for the nutritional challenges. Another 98 

study have highlighted the large differences in milk production in goats that are subject to the 99 

same diet and environmental conditions [13]. There are few other approaches to describe the 100 

shape of the lactation curves from animals faced with health problems. Lescourret and Coulon 101 



[14] had shown the huge variability of milk production in response to mastitis in both form of 102 

the lactation curve and intensity of milk production. Adriaens et al. [1] developed a novel 103 

methodology to predict quarter milk yield during clinical mastitis.  104 

The main shortcoming of approaches cited above is the lack of an explicit representation of 105 

perturbations which are only captured through statistical objects. To overcome this limit, 106 

models on different animal species have been developed with a more explicit representation of 107 

perturbations. In the work of Revilla et al. [15] on growing piglets, a classical Gompertz 108 

equation, used to capture the unperturbed growth curve, is combined to an equation of the 109 

perturbation, used to capture the perturbation in body weight change induced by the weaning 110 

stress. Another model based on differential equations was developed to characterize the feed 111 

intake response of growing pigs to perturbations [16]. Sadoul et al. [17] used a model based on 112 

a spring and a damper to capture perturbations in physiological responses to challenges on 113 

rainbow trout. This formalism allows the characterization of perturbations with stiffness and 114 

resistance to the change of the system.  115 

These recent modelling developments exhibit two major limits for application to lactation 116 

curve: first, they do not allow to capture multiple perturbations that may be imbricated and 117 

second they imply that the time of perturbation is a priori known.  118 

In this study, we developed a Perturbed Lactation Model (PLM) that incorporates an explicit 119 

representation of perturbations and that converts individual raw time-series data into biological 120 

meaningful parameters. The fitting procedure of PLM allows the detection and the 121 

characterization of perturbations in milk time-series. The objective of the present paper is (1) 122 

to introduce the PLM model and the explicit representation of perturbations, (2) to describe the 123 

use of PLM to detect and characterize perturbations in milk yield time series with an example 124 

in dairy goats, and (3) to illustrate the role of PLM as a phenotyping tool by analyzing the 125 



variability in perturbed lactation curves on the basis of the fitting results obtained on the dairy 126 

goat dataset.  127 



MATERIALS AND METHODS 128 

The PLM is composed of a lactation model, denoted 𝑌∗, describing the theoretical unperturbed 129 

dynamics of milk yield along the lactation, and a perturbation model, denoted 𝜋, describing 130 

deviations from the lactation model. The list of model parameters is provided in Table 1. 131 

Table 1: Model parameters 132 

Symbol Definition  

Wood Model 

a Parameter scaling the general level of the lactation curve 

b Parameter controlling the type and magnitude of the curvature of the lactation 

curve 

c Parameter regulating the rate of decrease in milk yield after the lactation peak 

Perturbed Lactation Model with N perturbations (PLMN) 

N Number of perturbations 

i Perturbation number (𝑖 ∈ [0; 𝑁]) 
tP,i Time of start of the ith perturbation 

k0,i Parameter of intensity of the ith perturbation 

k1,i Parameter of collapse speed of the ith perturbation 

k2,i Parameter of recovery speed of the ith perturbation 

The dynamics of daily milk yield (𝑌(𝑡), in kg) during the lactation is thus given by: 133 

𝑌(𝑡) = 𝑌∗(𝑡) ∙ 𝜋(𝑡) 134 

where 𝑡 is the time after parturition in days. 135 

Unperturbed lactation model 136 

Among the numerous mathematical models developed to study lactation curves, the incomplete 137 

Gamma function proposed by Wood [10] has been widely used in different mammals (e.g., 138 

rabbit [18], sheep [19], cattle [20]). This model gives a general expression for the dynamics of 139 

milk yield along the lactation. In this article, we have selected this model as an example to 140 

define the unperturbed lactation curve. Because the structure of PLM is generic, any other 141 

lactation model can be used. 142 

The Wood model is given by: 143 

𝑌∗(𝑡) = 𝑎 ∙ 𝑡𝑏 ∙ 𝑒−𝑐∙𝑡 144 



where 𝑌∗(𝑡) is the unperturbed daily milk yield in kg, 𝑡 is the time in days after parturition 145 

and 𝑎, 𝑏, 𝑐 are positive parameters that determine the shape of the lactation curve (𝑎 scales the 146 

general level of the curve, 𝑏 controls the type and magnitude of the curvature of the function, 147 

and 𝑐 regulates the rate of decrease in milk yield after the lactation peak). Values of these 148 

parameters can be used to calculate some essential features of the lactation curve such as the 149 

time of peak yield (𝑏 𝑐⁄ , in days), the lactation persistency, i.e., the extent to which peak yield 150 

is maintained (−(𝑏 + 1) ∙ 𝑙𝑛(𝑐) in kg.d-1), or the peak yield (𝑎 ∙ (𝑏 𝑐⁄ )𝑏 ∙ 𝑒−𝑏 in kg) [21]. 151 

Perturbation model 152 

The perturbation model is based on the idea that each single perturbation i affecting lactation 153 

dynamics can be described as a transient proportional decrease in milk yield, through a 154 

sequence of collapse and recovery. Each perturbation can thus be modelled by way of a 3-155 

compartment model (Figure 1) representing the dynamics of the proportion of milk withdrawn 156 

from the theoretical unperturbed yield. 157 

The three compartments of the model are: 𝐴𝑖, the maximal proportion potentially affected by 158 

the ith perturbation, 𝑈𝑖, the proportion unaffected by the ith perturbation, and 𝑃𝑖, the proportion 159 

effectively affected by the ith perturbation. Given the structure of the compartmental model, 160 

forming a path from 𝐴𝑖 to 𝑈𝑖 through 𝑃𝑖, and given that the model is defined such as 𝐴𝑖 + 𝑃𝑖 +161 

𝑈𝑖 = 1, the dynamics of 𝑃𝑖 represents the proportional deviation in milk yield. 162 



 163 

Figure 1. Conceptual model of a single perturbation. A: proportion affected by the perturbation, 164 

P: proportion effectively affected by the perturbation, U: proportion unaffected by the 165 

perturbation. a) Model diagram and b) Solution dynamics. 166 

The perturbation model for a single perturbation 𝑖 is defined by the following simple differential 167 

system: 168 

𝑖𝑓 𝑡 ≥ 𝑡𝑃:

{
 
 

 
 

𝑑𝐴𝑖
𝑑𝑡

= −𝑘1,𝑖 ∙ 𝐴𝑖

𝑑𝑃𝑖
𝑑𝑡

= +𝑘1,𝑖 ∙ 𝐴𝑖 − 𝑘2,𝑖 ∙ 𝑃𝑖   

𝑑𝑈𝑖
𝑑𝑡

= +𝑘2,𝑖 ∙ 𝑃𝑖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒:

{
 
 

 
 
𝑑𝐴𝑖
𝑑𝑡

= 0

𝑑𝑃𝑖
𝑑𝑡

= 0

𝑑𝑈𝑖
𝑑𝑡

= 0

 169 

 170 

with the following initial conditions at parturition time (𝑡 = 0): 171 

{

𝐴𝑖(0) = 𝑘0,𝑖
𝑃𝑖(0) = 0

𝑈𝑖(0) = 1 − 𝑘0,𝑖

 172 



and where 𝑡𝑃𝑖, is the time of start of the ith perturbation, 𝑘0,𝑖 is the parameter of intensity of the 173 

ith perturbation (𝑘0,𝑖 ∈ ]0; 1]), 𝑘1,𝑖 is the parameter of collapse speed of the ith perturbation and 174 

𝑘2,𝑖 is the parameter of recovery speed of the ith perturbation. 175 

Assuming that 𝑘1,𝑖 ≠ 𝑘2,𝑖, the algebraic solution of this differential system is given by: 176 

{
 
 

 
 

𝐴𝑖(𝑡) = 𝑘0,𝑖 ∙ 𝑒
−𝑘1,𝑖∙𝛥𝑖(𝑡)

𝑃𝑖(𝑡) =
𝑘0,𝑖 ∙ 𝑘1,𝑖
𝑘1,𝑖 − 𝑘2,𝑖

∙ (𝑒−𝑘2,𝑖∙𝛥𝑖(𝑡) − 𝑒−𝑘1,𝑖∙𝛥𝑖(𝑡))

𝑈𝑖(𝑡) = 1 −
𝑘0,𝑖

𝑘1,𝑖 − 𝑘2,𝑖
∙ (𝑘1,𝑖 ∙ 𝑒

−𝑘2,𝑖∙𝛥𝑖(𝑡) − 𝑘2,𝑖 ∙ 𝑒
−𝑘1,𝑖∙𝛥𝑖(𝑡))

 177 

where 𝛥𝑖(𝑡) is the elapsed time since the beginning of the ith perturbation and is given by: 178 

𝛥𝑖(𝑡) = {
0 𝑖𝑓 𝑡 < 𝑡𝑃𝑖

𝑡 − 𝑡𝑃𝑖 𝑖𝑓 𝑡 ≥ 𝑡𝑃𝑖
 179 

Finally, the perturbation model, including 𝑛 individual perturbations affecting the lactation 180 

curve is given by: 181 

𝜋(𝑡) =∏(1 − 𝑃𝑖(𝑡))

𝑛

𝑖=1

 182 

 183 

Model formalism 184 

The detailed algebraic formula of PLM with 𝑛 individual perturbations is given by: 185 

𝑌(𝑡) = 𝑎 ∙ 𝑡𝑏 ∙ 𝑒−𝑐∙𝑡 ∙∏(1 −
𝑘0,𝑖 ∙ 𝑘1,𝑖
𝑘1,𝑖 − 𝑘2,𝑖

∙ (𝑒−𝑘2,𝑖∙𝛥𝑖(𝑡) − 𝑒−𝑘1,𝑖∙𝛥𝑖(𝑡)))

𝑛

𝑖=1

 186 

The model includes the three parameters of the Wood model (𝑎, 𝑏, and 𝑐) to define the 187 

unperturbed lactation curve, one parameter to define the number of perturbations affecting the 188 

lactation curve (𝑛), and four parameters per individual perturbation i (𝑡𝑃𝑖, 𝑘0,𝑖, 𝑘1,𝑖, and 𝑘2,𝑖) so 189 

that the total number of parameters to define PLM is equal to 4 + 4 ∙ 𝑛. 190 

A simulation of PLM with five perturbations over 300 days of lactation is shown in Figure 2 as 191 

an illustration of the model behavior. 192 



 193 

Figure 2. Example of a simulation of the Perturbed Lactation Model (PLM) including five 194 

perturbations with a) individual perturbations dynamics expressed as the proportion of 195 

unperturbed lactation curve (Pi) and b) unperturbed and perturbed milk yield dynamics. 196 

Perturbations were considered individually so that a perturbation can occur within another one 197 

(see P3 in Figure 2 at 𝑡𝑃3 = 100). Given that individual perturbations are proportional 198 

deviations multiplied between them, when a perturbation is added during another perturbation, 199 

the new perturbation is a proportion of the already perturbed curve. Moreover, perturbations 200 

can be used to simulate the effect of pregnancy (see P5 in Figure 2 at 𝑡𝑃5 = 225) with the 201 

recovery parameter 𝑘2,𝑖 set to zero. 202 

Fitting procedure 203 

PLM is aimed at detecting perturbations in milk yield time-series data and thus, provide 204 

estimates of (1) a theoretical unperturbed lactation curve and (2) the number, timing and shape 205 

of the perturbations leading to the observed perturbed lactation curve. A dedicated algorithm 206 



was developed in R (R Core Development Team, 2018) with the aim of fitting PLM on lactation 207 

data and deriving parameter estimates 𝑎, 𝑏, and 𝑐 to characterize the unperturbed lactation 208 

curve, 𝑛 to define the number of perturbations and parameter estimates (𝑡𝑃𝑖, 𝑘0,𝑖, 𝑘1,𝑖, and 𝑘2,𝑖) 209 

for each ith detected perturbation. Preliminary tests have shown that repeated fittings using 210 

different starting values can lead to the detection of perturbations differing in total number and 211 

detection order. This raised the question of the theoretical identifiability of the model 212 

parameters (for further details on identifiability see [22]) and of the use of a stop criterion to 213 

estimate 𝑛. The structure of the model does not allow a classical identifiability analysis to be 214 

performed if n is unknown. However, by using the software DAISY (Differential Algebra for 215 

Identifiability of Systems [23]), we could assess that for one perturbation the PLM parameters 216 

are locally identifiable. To facilitate the identification of the model parameters, we adopted a 217 

fitting strategy in two steps: first, performing numerous repeated fittings to estimate the most 218 

frequent number of perturbations. In the second step, we fixed as known the number of 219 

perturbations detected in step 1 and proceeded to estimate the remaining parameters of the 220 

model. This strategy ultimately makes it possible to estimate an optimal number of 221 

perturbations and facilitates the estimation of the model parameters. 222 

In the following section, PLMn stands for PLM with 𝑛 perturbations, 𝑘𝑊𝑛
 stands for the triplet 223 

of parameters (𝑎, 𝑏, 𝑐) of Wood’s model estimated with 𝑛 perturbations (𝑛 ranging from 0 to 224 

𝑛𝑚𝑎𝑥) and 𝑘𝑃𝑖,𝑛 stands for the quadruplet (𝑡𝑃𝑖, 𝑘0,𝑖, 𝑘1,𝑖, 𝑘2,𝑖) of the ith perturbation (𝑛 ranging 225 

from 1 to 𝑛𝑚𝑎𝑥). Since 𝑃𝐿𝑀𝑛 combines an estimated unperturbed lactation curve and n 226 

perturbations, 𝑃𝐿𝑀𝑛
∗  stands for the unperturbed lactation model (i.e., the lactation curve when 227 

the n perturbations are removed). 𝑃𝐿𝑀0 (i.e., PLM with zero perturbation) corresponds to the 228 

original Wood’s model without any perturbation.  229 

The nls.multstart package (version 1.0.0; [24]) performing non-linear least squares regression 230 

with the Levenberg-Marquardt algorithm and with multiple starting values was used for each 231 



single fit. Two different sampling schemes of starting parameters were used: random sampling 232 

of starting parameters from a uniform distribution within the starting parameter bounds or 233 

selection of combinations of starting parameters at equally spaced intervals across each of the 234 

starting parameter bounds. These two fitting methods are hereafter referred to as ‘shotgun 235 

search’ and ‘gridstart search’ respectively. Starting parameter bounds are defined as follows: 236 

𝑎: [0; 100]; 𝑏: [0; 1]; 𝑐: [0; 1]; 𝑡𝑃𝑖: [𝑡0; 𝑡3] (where 𝑡0 and 𝑡3 are the times of first and last records 237 

of the dataset); 𝑘0,𝑖: [0; 1]; 𝑘1,𝑖: [0; 10]; 𝑘2,𝑖: [0; 10]. For the ‘shotgun search’, the number of 238 

random combinations of starting parameters was set to 100,000. For the ‘gridstart search’, the 239 

number of combinations of starting parameters (i.e., the size of the grid), was set to five for 240 

parameters 𝑎, 𝑏, 𝑐, 𝑘0,𝑖, 𝑘1,𝑖, 𝑘2,𝑖 and to 10 for the parameter 𝑡𝑃𝑖. Consequently, for the fit of 241 

one perturbation (i.e., estimating 3 + 4 = 7 parameters) the number of tested combinations of 242 

starting parameters was 76 x 10 = 1,176,490. For both search methods, the best model was 243 

selected on the basis of the lowest Akaike Information Criterion (AIC) score [25]. 244 

The whole fitting procedure includes repetitions of a fitting sequence that proceeds by 245 

successive addition of perturbations. This fitting sequence is defined in such a way that the 246 

estimate of the parameters of each new perturbation is obtained while the parameters of the 247 

previously added perturbations are kept fixed. Therefore, the fitting of PLMi provides 248 

parameters estimates for the new added ith perturbation and for a new version of Wood model’s 249 

parameters 𝑘𝑊𝑖
 (i.e., each time a new perturbation is added, a new version of the unperturbed 250 

lactation is refined). For a given lactation dataset composed of daily milk yield records, the 251 

preliminary fitting of PLM0 (i.e., the original Wood’s model without any perturbation) was first 252 

performed to estimate 𝑘𝑊0
. Then, the fitting sequence starts by the fitting of PLM1 (i.e., PLM 253 

with 1 perturbation) thus providing estimates 𝑘𝑊1
and 𝑘𝑃1,1. Then, the fitting of PLM2 consists 254 

in estimating 𝑘𝑊2
 and 𝑘𝑃2,2 with 𝑘𝑃1,2 fixed equal to 𝑘𝑃1,1. Then, the fitting of PLM3 consists 255 

in estimating 𝑘𝑊3
 and 𝑘𝑃3,3 with 𝑘𝑃1,3 and 𝑘𝑃2,3 fixed equal to 𝑘𝑃1,2and 𝑘𝑃2,2, respectively. 256 



The procedure is applied stepwise until the maximum number of perturbation 𝑛𝑚𝑎𝑥 is reached. 257 

This maximum number is an a priori user defined value to fix a stop criterion. Preliminary tests 258 

have shown that setting 𝑛𝑚𝑎𝑥 = 15 was sufficient. The end of the fitting sequence consists in 259 

reordering the 𝑛𝑚𝑎𝑥 detected perturbations in decreasing order according to the time of 260 

perturbation 𝑡𝑃𝑖 (the original obtained order of perturbations is based on the opportunities found 261 

by the fitting procedure to improve the goodness-of-fit for each added perturbation). 262 

Finally, the whole fitting procedure is carried out following the 3 following steps: 263 

Step1: Repeat 100 times the fitting sequence with the ‘shotgun search’ and 𝑛𝑚𝑎𝑥 = 15. 264 

Step2: Compare the fitting results of the 100 repetitions obtained in Step1 and identify 265 

perturbations systematically detected at 𝑡𝑃𝑖 ± 3 days. This was performed by counting, for the 266 

15 perturbations over the 100 fitting results, the number of occurrences of the rounded value 267 

𝑡𝑃𝑖
∗ = 𝑟𝑜𝑢𝑛𝑑(𝑡𝑃𝑖 7⁄ ) ∙ 7. Step1 provides the optimal number of perturbations denoted 𝑁 (i.e., 268 

the value of n giving the best fit) with an estimate of 𝑡𝑃𝑖 for each perturbation (calculated as the 269 

median of the 𝑡𝑃𝑖 with the same rounded value 𝑡𝑃𝑖
∗). 270 

Step3: Perform the fitting sequence with the ‘gridstart search’, with 𝑛𝑚𝑎𝑥 = 𝑁 and with starting 271 

parameters bounds for each 𝑡𝑃𝑖 reset to [𝑡𝑃𝑖 − 10 ; 𝑡𝑃𝑖 + 10]. This last fit provides the final 272 

estimates 𝑘𝑊𝑁
 and (𝑘𝑃1,𝑁, … , and 𝑘𝑃𝑁,𝑁) characterizing respectively the best fit for the 273 

unperturbed model and the 𝑁 detected perturbations. The Root Mean Square Error (RMSE) 274 

was calculated to indicate the goodness-of-fit of PLMN. Additionally, the percentage of loss ′𝐿′ 275 

was calculated using the formula 𝐿 = 1 − 𝑆𝑁
∗ 𝑆𝑁⁄  where 𝑆𝑁

∗  and 𝑆𝑁 are respectively the total 276 

milk yield over [𝑡0; 𝑡3] calculated with 𝑃𝐿𝑀𝑁
∗  (the unperturbed curve corrected from N 277 

perturbations) and PLMN (the perturbed curve with N perturbations). 278 

To provide complementary information on lactation time-series and refine PLM outputs 279 

analysis, the model of Grossman et al. [26] was also fit to lactation data as described in Martin 280 



and Sauvant [27]. This fitting cuts the lactation period into three stages corresponding to early, 281 

middle and late stages (respectively intervals [𝑡0; 𝑡1]: increasing phase, [𝑡1; 𝑡2]: plateau-like 282 

phase, and [𝑡2; 𝑡3]: decreasing phase). This triphasic model, based on a smoothing logistic 283 

transition between intersecting straight lines, specifies the cut points of the three stages (instead 284 

of a priori number of days in milk). This fit was performed using the ‘gridstart search’ with 285 

[𝑡0; 𝑡3] as starting parameters bounds for the interval terminals 𝑡1and 𝑡2. 286 

Dairy goat dataset 287 

In this study we used data from 181 goats (94 Alpine and 87 Saanen) born between 2009 and 288 

2017. Data concerned 319 lactations (126 primiparous and 193 multiparous; parity ranging 289 

from 1 to 7) including 80,773 milk records from the dairy goat herd of the INRA-AgroParisTech 290 

Systemic Modelling Applied to Ruminants research unit (Paris, France) between 2015 and 291 

2018. Records are shown in supplementary Figure 1 by breed and parity. All lactations 292 

considered had at least one record in the first 5 days of lactation and a last record between 150 293 

and 358 days of lactation (no extended lactation included). 294 

Statistical analysis 295 

All statistical analyses were performed using R (R Core Development Team, 2018). 296 

Fixed effects of breed (Saanen vs. Alpine) and parity (1 vs. 2 and more) were tested on 297 

parameters of Wood, with and without the changes made from PLM model. It was also tested 298 

on estimated peak milk yield, peak time, total milk yield over [t0 ; t3], the number of perturbation 299 

and the rate milk loss using a mixed analysis of variance model with goat as a random factor. 300 

Fixed effect of lactation stage (early vs. middle vs. late) was tested on RMSE and on PLM 301 

parameters 𝑡𝑃, 𝑘0, 𝑘1, 𝑘2 with a mixed analysis of variance model with parity as a random factor. 302 

Pearson linear correlations were calculated for PLM parameters: intra-class of breed and parity 303 

for 𝑎, 𝑏, 𝑐, 𝑁, and 𝐿 and intra-class of stage of lactation for 𝑡𝑃, 𝑘0, 𝑘1, and 𝑘2.  304 



RESULTS 305 

Lactation duration ranged from 𝑡0 = 1.2 ± 0.6 to 𝑡3 = 270.3 ± 40.8 days in milk. Early, middle, 306 

and late lactation stages determined with Grossman’s model were 1.2 to 34.4, 34.4 to 171.0, 307 

and 171.0 to 270.3 days, respectively. 308 

Fitting 309 

The fitting procedure converged for the 319 lactations and detected a total of 2,354 310 

perturbations with an average of 7.4 perturbations per animal per lactation. Figure 3 shows the 311 

fitting of PLM on one lactation dataset. The fitting results on individual lactations exhibiting 312 

the minimum and maximum values for the RMSE (0.1 kg and 0.4 kg) are provided in 313 

supplementary Figure 2. The number of perturbations varied between 4 and 11, the percentage 314 

of milk loss between 2% and 19%, the total unperturbed milk yield was between 393 kg and 315 

1,557 kg and the record interval length was between 1 and 5 days for t0 and between 165 and 316 

358 days for t3. During the first fitting steps, the Wood's parameters were stabilized on average 317 

after the detection of the first 4 perturbations (supplementary Figure 3). This indicates the 318 

robustness of the unperturbed curve. 319 

Descriptive statistics of the results obtained from the fitting procedure of PLMN are given in 320 

Table 2 by breed and parity and are compared to the results obtained with PLM0, corresponding 321 

to an adjustment of the Wood model without any perturbations. The value for the parameter a 322 

greatly increased between the Wood model and PLMN. The values for parameters b and c 323 

decreased between the Wood model and PLMN. As a consequence, values for peak milk and 324 

time of peak increased between the Wood model and PLMN. Both models did not give a similar 325 

level of variance of error according to breed or parity level. Regarding the quality of fitting, the 326 

RMSE values showed a fairly significant decline between the Wood model (0.4 ± 0.1 kg) and 327 

PLMN (0.2 ± 0.1 kg). Considering explicit perturbations in the fitting of the Wood model with 328 



PLM compare to fitting directly the Wood function to data led to a decrease in RMSE, reflecting 329 

an improvement in the goodness of fit.  330 

 331 

Figure3. Example of the perturbed lactation model fitting procedure result on a one goat 332 

lactation dataset. a) frequency of detection of a single perturbation within +/- 10 days; b: 333 

unperturbed and perturbed lactation models plotted against data. 334 



Table 2. Results of the fitting procedure: comparison between breeds and lactation numbers across the models and variables. 335 

 All SAA (143) ALP (176)  

model 1 (126) 2 + (193) total (319) 1 (59) 2 + (84) total (143) 1 (67) 2 + (109) total (176) P-value 

Wood1 Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd Breed Parity 

a 1.88 0.63 2.39 0.79 2.14 0.71 1.84 0.55 2.44 0.84 2.20 0.83 1.92 0.69 2.34 0.76 2.17 0.72 NS *** 

b 0.22 0.11 0.24 0.11 0.23 0.11 0.22 0.11 0.23 0.11 0.23 0.11 0.22 0.11 0.25 0.12 0.24 0.12 NS NS 

c 0.004 0.002 0.004 0.002 0.004 0.002 0.003 0.002 0.004 0.002 0.004 0.002 0.003 0.001 0.005 0.002 0.004 0.02 *** *** 

RMSE3 (kg/d) 0.31 0.08 0.44 0.14 0.38 0.11 0.32 0.87 0.46 0.15 0.40 0.15 0.30 0.08 0.43 0.12 0.38 0.13 * *** 

Peak milk4 (kg) 3.54 0.55 4.72 0.72 4.13 0.64 3.56 0.59 4.69 0.70 4.25 0.88 3.53 0.52 4.75 0.73 4.26 0.87 NS *** 

Peak time5 (d) 63.85 32.18 56.81 22.01 60.33 27.10 74.28 39.88 60.23 24.76 67.26 32.32 54.66 19.50 54.17 19.33 54.42 19.42 * * 

Total milk (kg) 719.60 149.14 972.84 204.34 846.22 176.74 731.91 150.04 986.85 223.17 859.38 186.60 708.77 148.61 962.04 188.91 865.51 168.76 NS *** 

PLM2                     

a 2.16 0.60 2.77 0.69 2.53 0.72 2.14 0.49 2.89 0.71 2.58 0.73 2.18 0.68 2.68 0.66 2.49 0.71 NS *** 

b 0.17 0.08 0.19 0.08 0.18 0.08 0.16 0.07 0.16 0.07 0.16 0.07 0.17 0.09 0.20 0.08 0.19 0.08 *** NS 

c 0.003 0.001 0.003 0.002 0.003 0.001 0.002 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.004 0.001 0.003 0.001 *** *** 

RMSE 3 (kg/d) 0.18 0.04 0.25 0.05 0.22 0.05 0.19 0.05 0.25 0.04 0.22 0.05 0.18 0.03 0.24 0.06 0.21 0.06 NS *** 

Peak milk4 (kg) 3.57 0.47 4.81 0.71 4.19 0.59 3.56 0.44 4.75 0.68 4.28 0.83 3.59 0.50 4.86 0.73 4.37 0.90 * *** 

Peak time5 (d) 63.51 25.65 69.46 37.33 66.49 31.49 77.73 45.07 67.81 32.26 68.89 29.72 57.80 24.11 60.56 33.26 59.50 30.04 *** NS 

SN
6 (kg) 712.25 147.60 962.42 201.67 837.34 174.64 723.99 148.53 976.65 220.74 850.32 184.64 701.92 147.12 951.36 185.47 826.64 166.30 NS *** 

𝑺𝑵
∗ 7 (kg) 766.28 164.17 1,053.92 232.29 910.10 198.23 780.75 165.60 1,069.68 255.55 925.21 210.58 753.54 163.07 1,041.65 212.87 897.60 187.97 NS *** 

N 7.59 1.30 7.38 1.47 7.49 1.39 7.53 1.28 7.44 1.51 7.48 1.41 7.64 1.33 7.33 1.45 7.45 1.41 NS NS 

L (%) 6.02 2.38 7.43 3.50 6.73 2.94 6.19 2.75 7.51 3.66 6.97 3.37 5.87 2.01 7.36 3.39 6.79 3.02 NS *** 

Signification codes: 0.001: ‘***’, 0.01: ‘**’, 0.05: '*', NS : not significant. 336 

Number of lactation curves 337 
1 

Wood model (1967): a, b, and c: estimated Wood parameters, 2 Perturbated Lactation Model based on Wood, 3 RMSE: root mean square error of model fit, 4 peak milk 338 

= 𝑎 . (
𝑏

𝑐
)𝑏 . 𝑒−𝑏, 5 peak time = 

a

b
 , 6 total milk based on the PLM perturbed lactation curve: SN= ∑ y(t)

t1
t0

, 7 total milk based on the PLM unperturbed lactation curve: 𝑆𝑁
∗ =339 

∑ 𝑦∗
(𝑡)

𝑡1
𝑡0

, N: number of perturbation detected, L: milk yield loss 340 

 341 



Unperturbed lactation curve 342 

Descriptive statistics of the parameters a, b and c for the unperturbed lactation curves (for both 343 

models: 𝑃𝐿𝑀𝑁
∗

 and Wood model) are presented in Table 2 for the overall dataset, breed and 344 

parity. The parameter a, which drives the general scaling of the curve, was not significantly 345 

different for the two breeds (Alpine: 2.49 ± 0.71; Saanen: 2.58 ± 0.73). Consequently, no 346 

significant breed effect was found for the peak milk or for the total unperturbed milk production. 347 

The same statistical effects were found with the Wood adjustment without perturbation. The 348 

parameter a was significantly affected by the parity of the lactation, with first lactations having 349 

a lower value for parameter a than the two and more parities (Table 2). Consequently, there 350 

was a significant parity effect on the peak milk and on the total milk production. The parameter 351 

b, which drives the curvature of the lactation curve, was significantly affected by breed. Alpine 352 

goats exhibited higher values of b compared to Saanen goats (Alpine: 0.19 ± 0.08; Saanen: 0.16 353 

± 0.07). Parity also had a significant effect on the parameter b, with first lactations having a 354 

lower value for parameter b than two and more lactations. Regarding the parameter c, which 355 

drives the rate of decrease of milk production after the peak, both parity and breed effects were 356 

highly significant. Alpine goats exhibited a same value for the parameter c than the Saanen 357 

goats (Alpine: 0.003 ± 0.001; Saanen: 0.003 ± 0.001). For this parameter, first lactations had a 358 

lower value than two and more lactations (Primiparous: 0.002 ± 0.001; Multiparous: 0.003 ± 359 

0.001). The peak time of the unperturbed curve, resulting from both b and c parameters, was 360 

significantly affected by breed, with Saanen goats exhibiting a peak 14 days later in lactation 361 

than the Alpine goats. The statistical effects found for 𝑃𝐿𝑀𝑁
∗

 parameters were consistent with 362 

the effects found for the Wood model (PLM0), except for the peak time. Regarding peak time, 363 

the Wood model peak time was slightly affected by both breed and parity, while for the 𝑃𝐿𝑀𝑁
∗

 364 

peak time, breed had a very significant effect and parity was not significant.  365 



Individual unperturbed lactation curves obtained with 𝑃𝐿𝑀𝑁
∗

 for increasing parities are shown 366 

in Figure 4. Some of these individual adjusted curves were considered as atypical, in the sense 367 

they departed from the general shape of the Wood model. An individual lactation was 368 

considered “atypical” if the persistence estimated by PLM, i.e. the value of parameter c, was an 369 

outlier, defined as a value either 3 times above the inter-quartile range (IQR) (above the third 370 

quartile of the distribution for the c parameter) or 3 times below the IQR (below the first quartile 371 

of the distribution for the c parameter). However, it is important to note that atypical curves 372 

observed in the dataset were biologically true. A total of 18 out of the 319 analyzed curves were 373 

classified as atypical. Generally, these atypical curves come from the same goat in different 374 

parities or for primiparous that have not started the second parity. Peaks of milk of the 375 

unperturbed lactation curve were on average increased by 27.47% between the first parity and 376 

the second parity, by 9.46% between the second parity and the third parity, and by -0.29% 377 

between the third parity and the fourth parity (Figure 4). The total milk production for the 378 

unperturbed curve was increased by 32.55% between the first parity and the second parity, 379 

5.20% between the second parity and the third parity, and by 1.01% between the third parity 380 

and the fourth parity. These results are consistent with Arnal et al. [28]. 381 

 382 

Figure 4. Individual unperturbed curves extracted from data after removal of the estimated 383 

perturbations using PLM for increasing parity number (fit on 319 lactation data; Atypical curves 384 

correspond to outlying estimates of the parameter c governing milk persistency). 385 



The Pearson linear correlation matrix by breed and parity between parameters of 𝑃𝐿𝑀𝑁
∗  is 386 

shown in Figure 5 (panels a and b). A strong negative correlation was found between a and b 387 

(-0.65), indicating that high values of a (scaling of the lactation curve), were associated with 388 

low values of b (shaping the curve). A positive correlation was found between the parameters 389 

c and b (0.64) indicating a positive association between the shape of the curve and the rate of 390 

decrease of lactation. Finally, a low negative correlation between c and a (-0.11) was found. 391 

These results are consistent with the well-known features of lactation curves: higher milk at 392 

peak yield being associated with higher speed of decline after peak. Several factors (e.g. breed, 393 

parity, seasonality, and season of kidding) can affect characteristics of the lactation curve. The 394 

differences found in this study between primiparous and multiparous goats are consistent with 395 

previous studies [28, 29] with primiparous goats being less productive, with a lower peak yield 396 

and a greater persistency. Despite the lack of a significant effect of parity, our results are 397 

consistent with previous studies [29] where primiparous goats had a peak later than multiparous 398 

(see Table 2). The strong breed effect we observed on peak time is consistent with previous 399 

studies [29] with Saanen goats having a peak yield later than Alpine goats.  400 

Number of perturbations and milk loss 401 

The effects of parity and breed on the total number of perturbations were not significant. Total 402 

number of perturbations was 7.59 for the primiparous, 7.38 for the multiparous, 7.45 for the 403 

Alpine and 7.47 for the Saanen. By contrast, the rate of milk yield loss after perturbation was 404 

significantly affected by the parity. A Pearson linear correlation matrix by breed and parity 405 

between 𝑃𝐿𝑀𝑁
∗  estimates for the number of perturbations (𝑁), percentage loss of milk yield (𝐿), 406 

and goodness of fit RMSE was also carried out (Figure 5, panels c and d). A positive correlation 407 

was noted between RMSE and milk loss (0.38). However, weak negative correlations between 408 

the number of detected perturbations and RMSE (-0.16), and the number of perturbations and 409 

the milk loss (-0.20) were also noted. Distributions of 𝑁, 𝐿 and RMSE showed an even larger 410 



difference according to the parity than to the breeds. These results show that it is not the number 411 

of perturbations that contribute the most to the loss in milk yield over the lactation. 412 

 413 

Figure 5. Pearson linear correlation matrix of PLM parameters estimates: panels (a) and (b): the 414 

a, b, c parameters defining the unperturbed curve (a: by parity and b: by breed). Panels (c) and 415 

(d): the number of perturbations N, milk loss and RMSE (c: by parity and d: by breed). 416 

Perturbation timing and shape 417 

Table 3 gives descriptive statistics on the parameters of PLM characterizing the 2,354 418 

perturbations detected during the fitting procedure: time 𝑡𝑃, intensity 𝑘0, collapse speed 𝑘1 and 419 

recovery speed 𝑘2 according to the lactation stage determined with Grossman’s model. Most of 420 

the perturbations were detected during the late stage of lactation (n=1,063). The number of 421 

perturbations tended to decrease in middle stage (n=1,054) and for early stage (n=237). The 422 

parameter 𝑘0 increased from early, middle and late lactation stage (Table 3). These results 423 



suggest that throughout the lactation process, perturbations become more intense. The 424 

parameter 𝑘1 decreased from early to late stages of lactation. This suggests that perturbations 425 

tended to be sharper at the beginning of lactation, with a high speed of collapse and recovery, 426 

while they tended to be smoother than the lactation progressed 427 

Table 3. Descriptive statistics of perturbation parameters for the 2,354 perturbations detected 428 

by the perturbed lactation model in the dairy goat lactation dataset. 429 

 Stage of lactation (2,354) 

 Early (237) Middle(1,054) Late (1,063) 

Perturbations Mean Sd Mean sd Mean sd 

tp : time 33.8 34.0 107 63.0 202 60.0 

k0 : intensity 0.450 0.331 0.506 0.349 0.672 0.359 

k1 : collapse 4.01 4.17 3.41 3.87 2.76 3.69 

k2 : recovery 1.13 1.96 1.18 1.79 0.95 1.71 

 430 

The PLM parameter 𝑘0, which drives the intensity of the perturbation, varied considerably 431 

between 0.001 and 1 (set as a boundary). The parameter 𝑘1 (which drives the collapse speed of 432 

the perturbation), and the parameter 𝑘2 (which drives the speed of recovery) varied between 0 433 

and 10. A gradient according to the stage lactation was noted for these parameters. A gradual 434 

increase in 𝑘0 and a gradual decrease in 𝑘1 and 𝑘2 according to early, middle and late lactation 435 

stages was noted (Table 3). In the late stage, 30.20% of the perturbations were detected with a 436 

parameter 𝑘2 equal to 0, which implied a perturbation without any recovery period. Among 437 

these perturbations, 85.39% had a 𝑘0 value equal to 1. On the other hand, in the early and middle 438 

stages, the perturbations detected with an 𝑘2 equal to 0 were 1.70% and 7.07%, respectively. 439 



Discussion 440 

Combining two types of models 441 

In this study, we described the PLM model proposed as a tool for extracting simultaneously 442 

perturbed and unperturbed lactation curves from daily milk time-series. The key original feature 443 

of PLM is to combine an explicit representation of perturbations with a mathematical 444 

representation of the lactation curve. 445 

Regarding the mathematical representation of the lactation curve, the structure of PLM is 446 

generic and any equation can be used to describe the general pattern of milk production 447 

throughout lactation (see appendix including Figure 4 showing illustration of results with other 448 

lactation models). The Wood model [10] was chosen in this study as it is one of the most well-449 

known and commonly used mathematical model of lactation curve. Behind the choice of 450 

considering a general pattern of lactation that is distorted by perturbations, the biological 451 

assumption is that the dairy female has a theoretical production potential (the unperturbed 452 

curve) corresponding to the expression of its genetics in a given environment. This genetic 453 

potential may not be fully expressed in the farm environment because of perturbations (the 454 

perturbed curve).  455 

Regarding the representation of perturbations, we chose an explicit formalism with a 456 

compartmental structure for every single perturbation. With this conceptual choice, PLM 457 

overcomes limitations of recent models developed for capturing perturbations [15–17]. It 458 

allows the capture of multiple perturbations with contrasted features: from a sharp and short 459 

drop (for instance due to a diarrhea episode) to a long and slow decrease (for instance due the 460 

gestation status). PLM also allows to determine the time at which the perturbations occur during 461 

the lactation. This last point is of great interest to add value to on-farm data where challenges 462 

imposed to animals do not result from controlled trials and arise from the farm environment.  463 



By combining a general model of lactation curve with an explicit model of perturbations, PLM 464 

provides two key outputs: first, the unperturbed curve of the lactating female reflects its 465 

production potential in a non-perturbed environment, and second the perturbed curve which 466 

reflects the production permitted by the farm environment. The PLM parameters (𝑘0,𝑖, 𝑘1,𝑖 467 

and 𝑘2,𝑖) provides the most useful information on characteristics of the perturbed lactation curve 468 

including scale and shape for each perturbation. Indeed, by providing a perturbed curve, we 469 

give an estimate of the number of perturbations and for each perturbation an estimate of its time 470 

of start 𝑡𝑃,𝑖, intensity 𝑘0,𝑖, collapse speed 𝑘1,𝑖 and recovery speed 𝑘2,𝑖. This not only allows PLM 471 

to be flexible in capturing different types of perturbations (e.g., gestation, drying, disease), but 472 

also to produce metrics to compare the effect of these perturbations on milk yield. In such cases, 473 

and by introducing the information concerning these perturbations as an explicit component in 474 

the Wood model, we force the model to take into account these perturbations to build the 475 

unperturbed curve. 476 

With the development of on-farm technology measurements, an interesting perspective for 477 

PLM is to be used to assess other biological time-series data, such as body weight changes, dry 478 

matter intake, and hormones dynamics during lactation. 479 

Fitting algorithm 480 

Beyond the original concepts behind PLM, a key methodological development has been the 481 

fitting algorithm. The number of parameters to be determined is substantially important, 482 

including the Wood parameters of the unperturbed curve (3 parameters), and PLM parameters 483 

(4 parameters for each perturbation). To overcome the difficulty of estimating a high number 484 

of parameters, a 2-step algorithm was implemented. The first step of the procedure was to 485 

determine Wood parameters and the time when the perturbation starts. The second step of the 486 

procedure was to determine PLM parameters. Another difficulty concerned the choice of a 487 

maximum number of perturbations. After several attempts, this 2-step algorithm was selected 488 



for three main reasons. The first one was related to the visual quality of the fitting results itself. 489 

Indeed, the obtained fitted curve is always very close to what would have been drawn after 490 

simply looking at the raw data and wondering what the lactation curve would be without 491 

perturbations. This proximity to what could have been inferred was considered decisive, yet 492 

subjective. The second reason was related to the issue of finding the number of perturbations. 493 

The PLM procedure allows an automated determination of an optimal number of perturbations, 494 

without a priori estimates or use of an arbitrarily chosen stopping criterion. Preliminary results 495 

have showed that allowing a maximal number of 15 perturbations to be detected in the first step 496 

of the algorithm was enough for the considered dataset. The third reason pertained to the model 497 

parameters identifiability issue [22]. Since the fitting is based on a huge number of repeated 498 

fittings from which the systematically detected times of perturbations are retained, the 2-step 499 

fitting algorithm facilitates the practical identifiability of the model parameters. Indeed, the 500 

overall fitting algorithm was applied several times to the same dataset. Given that obtained 501 

parameter estimates were the same between the different runs, not only it strengthens the 502 

convergence properties of the algorithm but also it guarantees model parameters identifiability. 503 

Fitting results (see Figure 6) have shown that, in some cases, parameter estimates characterizing 504 

an individual perturbation reached their initial upper boundaries (1 for parameter 𝑘0,𝑖 and 10 505 

for parameters 𝑘1,𝑖 and 𝑘2,𝑖). This situation concerns perturbations with a narrow and deep peak-506 

shape. By construction, the value of the parameter k0 (intensity of the perturbation) is a 507 

proportion and thus not supposed to exceed 1. For the parameters 𝑘1 and 𝑘2, a value of 10 508 

already represents a very abrupt collapse or recovery, respectively. These results are therefore 509 

considered relevant. However, a next step may be to test the model on a larger dataset to assess 510 

the need to broaden these boundaries. Furthermore, another working step will consist in 511 

developing an application where the settings of the PLM algorithm can be user-defined. For 512 



instance, the maximal number of detectable perturbations, the size of the search grid in step 513 

one, or boundaries of parameters. 514 

 515 

Figure 6. Pearson linear correlation matrix on the PLM parameters by stage of lactation: tp: 516 

perturbations times detected; k0: intenstity, k1: collapse and k2: recovery of perturbation. 517 

Phenotyping tool 518 

PLM was developed to improve the ability to phenotype animals by extracting biological 519 

meaningful information from raw data. The unperturbed curve fitted by PLM makes it possible 520 

to compare animals based on their potential of milk production. With this information, animals 521 

can be ranked based on the production level they would have achieved in a non-perturbed 522 

environment, instead of being ranked based on the measured production level assuming no 523 



perturbations were encountered. This ranking may be of interest for the famer’s breeding 524 

strategy, avoiding the culling of animals that have faced a challenge decreasing their production 525 

milk while still having high genetic merit. 526 

The perturbed curve and the characteristics of each perturbation (time, intensity, collapse and 527 

recovery) open the perspective of working on perturbations as such and using this information 528 

for breeding and management. As a phenotyping tool, PLM can be useful for genetic selection. 529 

Studying characteristics of perturbations throughout many lactations of a large number of 530 

individuals and linking them to genetic or genomic information opens perspectives to evaluate 531 

their heritability and their potential genetic impact. PLM can also be a valuable tool for on-farm 532 

management. Linking perturbations with other information on the animals, such as lactation 533 

stage, parity, gestation stage, can help to detect sensitive periods where perturbations are more 534 

likely to occur. By cross-checking information on perturbations from all animals with 535 

information on the farm environment (for instance temperature, feed availability), it would be 536 

possible to detect synchronous occurrences of perturbations and link them to farm environment 537 

or management practices during times of stress. With this better understanding of 538 

environmental effects on animal production, preventive measures on the farm could be made. 539 

Understanding the effects of the environment on farm animals and understanding how they 540 

cope with perturbations during crucial times could help to gain insights on resilience and 541 

robustness. These complex dynamic properties are highly desirable to face the changes 542 

occurring in the livestock sector [30]. While the conceptual framework to work on resilience 543 

and robustness is now well defined in animal sciences, we still need operational metrics [31]. 544 

Such metrics have been proposed for a single perturbation by Revilla et al., [15] and Sadoul et 545 

al. [17]. Taking into account this type of information can provide a proxy to estimate the 546 

frequency and severity of disorders such as clinical mastitis [32]. Studying perturbations in 547 

lactation curves also makes it possible to compare animals facing the same stress and detect the 548 



ones with the greatest adaptive capacities. Finally, the on-farm early detection of perturbations 549 

in milk yield can provide farmers with an alert system on udder health. Recently, Huybrechtset 550 

al. [33] tested and developed the synergistic control concept for early detection of milk 551 

abnormalities in dairy cows based on detection of shifts in milk yield per hour. Of the 49 552 

mastitis cases, 31 cases were detected using this methodology at the same time or earlier than 553 

they were detected by the farmer. 554 

To our knowledge, existing metrics for dropped milk yields per day in the lactation curve, as 555 

proposed by Elgersma et al. [11], are based on a variance approach applied to the whole curve. 556 

Fluctuations in milk yield are summarized with a single statistical measure. Complementary to 557 

this type of approach, PLM can decompose the whole curve and characterize each perturbation, 558 

with metrics that are consistent with the concept of resilience of each and subsequent 559 

perturbation. The PLM model offers a way of quantifying the consequences of external factors 560 

and exploring hypotheses about the biological types of responses due to specific perturbations. 561 

By giving a biological meaning to these parameters, we can reconcile a phenotyping tool with 562 

the opportunity of an explanatory selection approach.  563 

A major limitation of PLM results in its dependency to the quality of data. Indeed, if data are 564 

recorded with a low accuracy (due to technical problems of measurements), the outputs of PLM 565 

do not have consistency as detected perturbations have nothing to do with perturbations of the 566 

lactation curve, but are related to accuracy problem. In addition, PLM has been developed with 567 

daily records. It will be necessary to evaluate if PLM can operate correctly with less frequent 568 

data. Finally, PLM is based on the concept of a theoretical unperturbed curve of milk 569 

production, considered as a potential, and used to determine deviations that reflect 570 

perturbations. This rationale for an underlying potential is debatable from a biological point of 571 

view. Nevertheless, from a strict mathematical point of view, we considered this approach as 572 



valuable to provide a tool for interpreting data. The application of PLM on other datasets from 573 

other species could provide information to further evaluate this point. 574 

Conclusion  575 

By combining a general description of the lactation curve with an explicit representation of 576 

perturbations, the PLM model allows the characterization of the potential effects on milk 577 

production, allowing to assess animal genetics, and the deviations induced by the environment, 578 

reflecting how animals cope with real farm conditions. The translation of raw time series data 579 

into quantitative indicators makes it possible to compare animals’ phenotypic potential and 580 

bring insights on their resilience to external factors. In that sense, PLM could be used as a 581 

valuable phenotyping tool and it contributes to provide decision solutions for dairy production 582 

that are grounded in a biologically meaningful framework. Further modelling studies should 583 

strive for integrating high throughput data analysis with such biological framework. 584 
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